skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Papanicolaou, Nectarios C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A linear sixth-order partial differential equation (PDE) of “parabolic” type describes the dynamics of thin liquid films beneath surfaces with elastic bending resistance when deflections from the equilibrium film height are small. On a finite domain, the associated sixth-order eigenvalue problem is self-adjoint for the boundary conditions corresponding to a thin film in a closed trough, and the eigenfunctions form a complete orthonormal set. Using these eigenfunctions, we derive the Green’s function for the governing sixth-order PDE on a finite interval and compare it to the known infinite-line solution. Further, we propose a Galerkin spectral method based on the constructed sixth-order eigenfunctions and their derivative expansions. The system of ordinary differential equations for the time-dependent expansion coefficients is solved by standard numerical methods. The numerical approach is applied to versions of the governing PDE with a second-order spatial derivative (in addition to the sixth-order one), which arises from gravity acting on the film. In the absence of gravity, we demonstrate the self-similar intermediate asymptotics of initially localized disturbances on the film surface, at least until the disturbances “feel” the finite boundaries, and show that the derived Green’s function is an attractor for such solutions. In the presence of gravity, we use the proposed Galerkin numerical method to demonstrate that self-similar behavior persists, albeit for shortened intervals of time, even for large values of the gravity-to-bending ratio. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026